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Abstract

Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water
resources and benefits gained through hydropower generation. Improving hourly reser-
voir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot)
market of the Nordic exchange market. We present here a new approach for issuing
hourly reservoir inflow forecasts that aims to improve on existing forecasting models
that are in place operationally, without needing to modify the pre-existing approach, but
instead formulating an additive or complementary model that is independent and cap-
tures the structure the existing model may be missing. Besides improving forecast skills
of operational models, the approach estimates the uncertainty in the complementary
model structure and produces probabilistic inflow forecasts that entrain suitable infor-
mation for reducing uncertainty in the decision-making processes in hydropower sys-
tems operation. The procedure presented comprises an error model added on top of
an un-alterable constant parameter conceptual model, the models being demonstrated
with reference to the 207 km? Krinsvatn catchment in central Norway. The structure
of the error model is established based on attributes of the residual time series from
the conceptual model. Deterministic and probabilistic evaluations revealed an overall
significant improvement in forecast accuracy for lead-times up to 17 h. Season based
evaluations indicated that the improvement in inflow forecasts varies across seasons
and inflow forecasts in autumn and spring are less successful with the 95 % prediction
interval bracketing less than 95 % of the observations for lead-times beyond 17 h.

1 Introduction

Hydrologic models can deliver information useful for management of natural resources
and natural hazards (Beven, 2009). They are important components of hydropower
planning and operation schemes where it is essential to estimate future reservoir in-
flows and quantify the water available for power production on a daily basis. The
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identification and representation of the significant responses of hydrologic systems
have been diverse among hydrologists. Different hydrologists have incorporated their
perceptions of the functioning of hydrologic systems into their models and come up with
several rival models; some of them process based and others data-based (for thorough
reviews of the historic development of hydrologic modelling refer to Todini, 2007 and
Beven, 2012). These models can be grouped in to two main classes, conceptual and
data-driven models.

Lumped conceptual hydrologic models are the most commonly used models in op-
erational forecasting. Models of this class use sets of mathematical expressions to
provide a simplified generalization of the complex natural processes of the hydrologic
systems in the headwater areas of reservoirs. Application of such models convention-
ally requires estimating the model parameters by conditioning to observed hydrologic
data. Unlike conceptual models, data-driven models establish mathematical relation-
ship between input and output data without any explicit attempt to represent the phys-
ical processes of the hydrologic system. Reconciling the two modelling approaches
and combining the advantages of both approaches (Todini, 2007), has produced some
example applications in forecasting systems where the two modelling approaches are
harmoniously used for improving reliability of hydrologic model outputs (e.g. Abebe and
Price, 2003; Solomatine and Shrestha, 2009).

Usefulness of a model for operational prediction is determined by the level of accu-
racy to which the model reproduces observed hydrologic behaviour of the study area.
In operational applications, evaluation of how well the models capture rainfall-runoff
processes, especially the snow accumulation and melting process in cold regions, is
important because the extent to which the models accurately reproduce the reservoir
inflows can significantly influence the efficiency of the hydropower reservoir operation
and subsequently the power price. Application of hydrologic models for reproducing
historic records can suffer from inadequacy in model structure, incorrect model pa-
rameters, or erroneous data. Consequently, despite failing to reproduce the observed
hydrographs exactly, they enable simulation of hydrologic characteristics of a study
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catchment to a fair degree of accuracy. It gets more challenging when using the mod-
els in the operational setup for forecasting the unknown future just based on the known
past, which the model might not capture accurately. In the context of the Norwegian
hydropower systems, being unable to predict future reservoir inflows accurately has
negative consequences to the power producers. Norway’s energy producers have to
pledge the amount of energy they produce for next 24 h in the day-ahead market and if
unable to provide the pledged amount of energy the chance of incurring losses is very
high. Estimation of future reservoir inflows (be it long- or short-term) involves estimat-
ing the actual (initial) state of the basin, forecasting the basin inputs during the lead-
time, and describing the water movement during the lead-time (Moll, 1983). Hence, the
quality of a hydrologic forecast depends on the accuracy achieved and methodology
selected in implementing each of these aspects.

In this study, we intend to use conceptual and data-driven models complementar-
ily. A conceptual model with calibrated model parameters is used as the fundamental
model that approximately captures dominant hydrologic processes and forecasts be-
haviour of the catchment deterministically. A data-driven model is then formulated on
the residuals, the difference between observations and predictions from the conceptual
model. By studying the whole set of residuals and exploring the information they con-
tain, important information that describes the inadequacies of the conceptual model
can be extracted. In general, this kind of information can be used for improving either
the conceptual model itself or the prediction skill of a forecasting system. Emulating
the practice in most Norwegian hydropower reservoir operators, we stick to the latter
purpose with the aim of enhancing the performance of a hydropower reservoir inflow
forecasting system. According to Kachroo (1992), data-driven models defined on the
residuals from a conceptual model can expose whether the conceptual model is ade-
quate to identify essential relationships exhibited in the input-output data series. Data-
driven models can establish the mathematical relationship that describes the persis-
tence revealed in the residual time series, which is caused by failure of the conceptual
model to capture all the physical processes exactly. Thus, in the operational sense, the

12066

Jladed uoissnasiq | Jadeq uoissnosiq | Jeded uoissnosiq | Jaded uoissnosiqg

HESSD
11, 12063-12101, 2014

Improving inflow
forecasting into
hydropower
reservoirs

A. S. Gragne et al.

' III III


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/11/12063/2014/hessd-11-12063-2014-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/11/12063/2014/hessd-11-12063-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

data driven models can play a complementary role by adjusting output of the concep-
tual model whenever the conceptual model needs corrective adaptation (e.g. Serban
and Askew, 1991; World Meteorological Organization, 1992).

Several example applications can be found in the scientific literature on using con-
ceptual and data driven models complementarily. For instance, Toth et al. (1999) com-
pared performance improvements six ARIMA based error models brought to stream-
flow forecasts from a conceptual model to identify the best error model and data re-
quirements. Shamseldin and O’Connor (2001) coupled a multi-layer neural network
model on top of a conceptual rainfall-runoff model to improve accuracy of stream flow
forecasts without interfering with operation of the conceptual model. Similarly, Madsen
and Skotner (2005) developed a procedure for improving operational flood forecasts
by combining error models (linear and non-linear) and a general filtering technique.
Xiong and O’Connor (2002) investigated performance of four error-forecast models
namely, the single autoregressive, the autoregressive threshold, the fuzzy autoregres-
sive threshold and the artificial neural network updating models, for improving real-time
flow forecasts and compared their results. Likewise, Goswami et al. (2005) examined
the forecasting skill of eight error-modelling based updating methods. A recent review
on the application of error models and other data assimilation approaches for updating
flow forecasts from conceptual models can be found in Liu et al. (2012).

Two main features distinguish the present paper from previous published works built
on the same concept of complementing conceptual models with data driven models.
Firstly, it attempts to provide hourly reservoir inflows of improved accuracy 24 h ahead.
The earlier papers mainly succeeded in improving forecasts for forecast lead-times up
to six time steps or incorporated a scheme to update the forecast system at an interval
of six time-steps. Secondly, an attempt is made in what follows, to produce a proba-
bilistic forecast by estimating the uncertainty of the error model, rather than only the
deterministic estimate. This, thereby, enables forecast of an ensemble of reservoir in-
flows, thereby allowing a risk-based paradigm for hydropower generation being put to
use. Reasons as to why hydrologic forecasts should be probabilistic, and the potential
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benefits therein are presented and explained in Krzysztofowicz (2001). Krzysztofowicz
(1999) describes a methodology for probabilistic forecasting via a deterministic hydro-
logic model. Smith et al. (2012) demonstrate a good example of producing probabilistic
forecasts based on deterministic forecast outputs. Hence, in this paper, the improve-
ment levels achieved are evaluated deterministically using the same or similar met-
rics as past studies, and probabilistically using reliability metrics introduced by Renard
et al. (2010). We here emphasise that taking into account uncertainties emanating
from various recognized sources and attaching the degree of reliability to the inflow
forecasts has important benefits.

In the next section, the complementary model setup is formulated and the perfor-
mance evaluation criteria are provided. An example application is presented in the
subsequent section. This includes description of the study area and data used, find-
ings from the evaluation of the complimentary setup and its components during cali-
bration and validation, and results of forecasting skill assessment using deterministic
and reliability metrics. Finally, a concluding remark is provided.

2 Methodology
2.1 Model setup

The conceptual and data driven models are coupled in a complementary fashion as
shown in Eq. (1).

OAt=qu+ét’ (1)

where Q is the overall predicted runoff, § is runoff prediction from the conceptual model,
and ¢ is error prediction from the complementary error model.

In the traditional setup, the discrepancy (&) between the reservoir inflow observed at
a given gauging station (Q) and the prediction from the conceptual model (§) at time
(f) can be expressed as
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This &; term comprises all error due to uncertainties in flow measurement, structure
and parameters of the conceptual model, etc.

2.1.1 The conceptual model setup

The widely applied conceptual hydrologic model — HBV — (Bergstrém, 1995) is used
in this study. The version used allows dividing the study catchment up to 10 elevation
zones. A deterministic HBV model with already calibrated model parameter values was
assumed to take the role of the operational hydrologic models Norwegian hydropower
companies commonly use for forecasting reservoir inflows. In the operational setup, the
air temperature and precipitation input over the forecast lead-time are obtained from
the Norwegian Meteorological Institute (www.met.no). As this study aims to improve
hydrologic forecasts into the hydropower reservoirs by complementing the conceptual
model by an error model, we assume that the predictions from the HBV model are made
using as good quality input data as possible. Hence, the observed air temperature and
precipitation data are used as input forecasts in hindcast.

2.1.2 The complementary error model

The error model aims at exploiting the persistence in the residuals and estimating the
errors likely to occur in the forecast lead-time. Forecasting the error in the lead-time is
regarded as a two-step process: off-line identification and estimation of the error model,
and error predictions based on most recent information.

Identification of the model structure

Because the error model is fit to residuals of the conceptual model (¢;, Eq. 2), diag-
nosing the residuals is a necessary first step. Analysing whether residuals of the HBV
12069
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model are random or show some bias, leads to identifying a parsimonious model that
describes the data adequately. Lest the mean of the residuals from the conceptual
model would be different from zero, the mean error (1) is subtracted from the error se-
ries (from the conceptual model) to produce a zero-mean residual series (e; = &; — Ug).
In addition to evaluating the bias, assessment of the auto correlation function (acf)
and partial autocorrelation function (pacf) are keys for identification of the order of
Markovian dependence the residuals exhibit. An autoregressive AR model structure is
considered (Eq. 3).

p
8= D a8, +1y, (3)
i

where p designates the length of the lag-time, a4, as, .. .,ap are coefficients of the AR
model, and r; is a random error describing the total uncertainty that originate from
various sources.

In order to provide improved hourly reservoir inflow forecasts over a 24 h lead-time,

the error-forecasting model takes the form of Eq. (4). In order to overcome lack of
observed residuals encountered for forecast lead-time (f) longer than one-step ahead,
it is necessary to utilize estimated errors as inputs (see Eq. 4). The number of estimated
errors values to be used as inputs depends on the identified order of the AR model and
can vary across the forecast lead-times.
(
.21 a8y i+ Mis forf =1
1=
. -1 p
Orar =9 2 8irip it 2 @iCryp_j+ 1Ny forf=2,....24&p>f (4)
j=1 i=f
p
:2:a,ét+f_/+-nhf for f = 2,...,24 &‘p <f
\ /=1
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In its complete form the predicted error in simulation mode can be given as

p

£t =He+ z aj€;_j + M- (5)
i=1

The noise term 1, in the presented forecasting system is assumed unimodal, symmetric

and unbounded random variable. The expected mean value of the noise term is further
assumed to be zero and the second moment is given as o

Parameter estimation

Parameters of the AR model can be set to the corresponding Yule—-Walker estimates
of a4, a,, ... ,a, given the autocorrelation function of the error series fulfils a form of
linear difference equation. However, in practice, Eq. (3) can be treated as a linear re-
gression and parameters can be estimated by Least Squares method as demonstrated
by Xiong and O’Connor (2002). An iterative algorithm suggested in Beven et al. (2008)
is adopted for estimating the model parameters while optimizing transformation of the
inflow data. Adoption of a methodology that amalgamates parameter estimation and
Box—Cox (Box and Cox, 1964) transformation of inflow is useful for taking into account
the heteroscedastic residuals and obtaining a normally distributed residual series from
the error model. The parameter and inflow transformation steps with a little modification
from Beven et al. (2008) are as follows:

1. Select values of 8,1 > 0 and transform the predicted reservoir inflow §; using
_ {((dﬁﬂﬂ—ﬂ)r‘ A>0
log (d; + ) 1=0
Similarly transform the observed reservoir inflow Q; to get Z;.

2. Calculate the residuals series from the transformed inflow data (¢; = Z; — z;).
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3. Perform an optimization for the error model parameters to minimize}, (¢; - ét)z.
Adjust (8,1) and repeat the optimization until the residuals of the error model
appear homoscedastic.

2.2 Performance evaluation

In addition to visual evaluation of the hydrographs, performance of the present pro-
cedure is robustly analysed using deterministic and reliability metrics. The root mean
square error (RMSE), percentage bias (PBIAS) and the Nash—Suitcliffe efficiency (NSE)
(Nash and Sutcliffe, 1970) are employed to evaluate efficiency of the models during cal-
ibration and validation deterministically. Evaluations are made with respect to varying
forecast lead-times and season wise as well. Among the three statistical performance
criteria, the PBIAS measures percentage of the volume error (PVE) between observed
and model predictions, which makes it an interesting metrics from hydropower systems
operations point of view. Quantifying PVE of the simulations/forecasts is important be-
cause it indicates how the inaccuracies affect a hydropower company’s ability to deliver
the amount of energy it has pledged to provide to the energy market. Therefore, special
attention is given to the PVE as follows.

PVE values indicate the magnitude of the errors as percentage of the observed
inflows. In this study, the PVEs are calculated at every time step by dividing the residual
to the observed inflow. The PVE analysis devised here divides the computed PVEs
into six PVE classes (i.e. <10, 10-20, 20-30, 30-40, 40-50 and > 50 %), and treats
overestimates and underestimates separately. The number of times each of the six
absolute PVE classes appeared in the set or subset of interest (i.e. hydrologic year or
seasons) is constructed by keeping score of the PVE class into which each and every
residual fell in. Then the fraction of time each PVE class occurred is divided to the
total number of points in the given set/subset and is reported as a percentage. This
is designated as a “PVE count”. Model performance assessment using PVE (during
simulation and forecasting) mainly focuses on assessing the change in number the
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number of incidences in each PVE set, which in other words means the change in
PVE counts. The PVE count/change in PVE count, along with the above-mentioned
deterministic statistical criteria, is used for evaluating simulation and forecasting skill of
the complementarily setup system (conceptual model + error model).

Another useful metric used for assessing forecasting skill of the complementary
setup is through uncertainty analysis. This necessitates constructing the uncertainty
in the forecasting system by estimating the (1 — a) prediction confidence interval of
the error model using Eq. (6), and measuring the reliability as described by Renard
et al. (2010). The reliability metrics assesses the probabilistic performance of the fore-
cast system by quantifying the percentage of observations falling in any desired interval
percentage. The desired interval percentage, in this study, is defined as 95 %.

n . 1 (81:t - 8)
€141 £ K1_a/2n-p)Ots1 |1+ Pl s—

(6)

n —\2
Z (81:t - 8)

where K(1_q/2,1-p) IS the a-level quantile of ¢-distribution with n - p degrees of freedom,
p is order of the AR model.

3 Example application
3.1 Study area and data

The Krinsvatn catchment is located in Nord Trondelag County in mid-north Norway. It
comprises an area of 207 km? and about 57 % of the catchment is mountain area above
timberline. The elevation ranges from 87 to 628 ma.m.s.l. (above mean sea level) and
is drained by the Stjerna/Nord River. The dominant land use is forest covering 20.2 %
of the study site while marsh, lakes and farmlands cover about 9, 6.7 and 0.4 % of the
catchment area, respectively. Figure 1 provides location and main characteristics of the
study site, and the daily potential evapotranspiration values used.
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Observed hourly data of eleven water-years (2000/2001 to 2010/2011) was split
into three sets used for warming-up (2000/2001), calibrating (2001/2002—2005/2006)
and validating (2006/2007—-2010/2011) the conceptual and the error models alike.
Observed precipitation and temperature data of two meteorological stations (i.e.
Svar-Sliper and Marre-Breivoll) in neighbouring catchments are used. Discharge data
for the catchment is derived from water level records at the Krinsvatn gauge station.
Beven (2001) outlines the advantages to direct use of water level information in hy-
drologic forecasting. Rating curve uncertainties and their influence on the accuracy of
flood predictions have been documented very well (e.g. Sikorska et al., 2013; Aronica
et al., 2006; Pappenberger et al., 2006; Petersen-Overleir et al., 2009). Krinsvatn is
considered a stable discharge measurement site with few external influences, and the
rating curve was updated in 2004. This study, however, considers the uncertainty of the
rating-curve to be one of the factors contributing to the total error expressed in Eq. (2)
and does not address it separately.

3.2 HBYV model for Krinsvatn catchment

The catchment is divided into 10 elevation zones in the HBV model setup. Input data
used are hourly areal precipitation, air temperature, and potential evapotranspiration.
The model is run on an hourly time step for water years 2000/2001 to 2005/2006 with
the last five water years being used for model calibration. Calibration is carried out using
the shuffled complex evolution algorithm (Duan et al., 1993), with the NSE between
the observed and predicted flows as an objective function. Description of the model
parameters along the corresponding optimized values is provided in Table 1.

3.2.1 Overview of the conceptual model’s performance

The simulation and observed reservoir inflow hydrographs shown in Fig. 2 indicate
a certain level of agreement for most of the calibration and validation periods, which
the statistical evaluations (Table 2) agree with. The overall hourly reservoir inflow
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predictions during calibration and validation show efficiency of NSE > 0.5 and PBIAS
< 25 %; even though simulations match observations better during calibration than
validation. High NSE values (> 0.8) during both calibration and validation reveal that
the inflow simulations fit the observed hydrographs best in the winter seasons. Never-
theless, it is evident that model predictions in the validation period are prone to under-
estimation bias (PBIAS > 0). Season wise assessment of the validation period reveals
the conceptual model’s tendency to underestimate reservoir inflows in spring and sum-
mer considerably. In light of what the NSE and PBIS metrics suggest, the lower RMSE
values (i.e. for instance summer season) do not reflect superior model performances.

PVE counts of the six PVE classes (i.e. <10, 10-20, 20-30, 30-40, 40-50 and
> 50 %) are computed on the residuals between observed and simulated reservoir in-
flows. The stacked-columns of Fig. 3a and b show how frequently each of the six abso-
lute PVE classes occurred over the calibration and validation period. The results reveal
a large degree of discrepancy between observations and predictions during calibration
and validation. Simulated inflows deviated from the corresponding observed values by
a magnitude of more than £10 % in about 83.3 % (calibration) and 88.6 % (validation) of
the respective simulation time steps. Huge difference between observations and simu-
lations is noted in the summer season with absolute PVE of the class > 50 % occurring
in more than half of the simulation time steps throughout the calibration and validation
periods. Winter simulations listed the highest level of occurrence of PVE of the class
< £10% during both calibration and validation. Comparable to the results in Table 2,
volume errors in winter simulations do not seem to be a serious problem, probably be-
cause the season is predominantly a snow accumulation rather than runoff generation
period. Errors of the high absolute PVE classes scored high PVE counts in the spring
and autumn seasons.

Details of the extent to which the reservoir inflows are under- and over-estimated
can be seen in Fig. 3c and d. The fraction of time the simulated inflows exhibited
under- and over-estimation during calibration is 51.9 and 46.8 %, respectively. In the
validation period, the reservoir inflows are underestimated about 65.6 % of the time
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compared to overestimation in 33.4 % of the times. This is also revealed in the findings
from statistical metrics in Table 2, which disclose the bias in the model. Yet, the results
in Fig. 3 further reveal that the model predictions deviate from the observations at high
discharges. For example, during the validation period 59.2 % of the times observations
exceeded the predictions by magnitudes more than 10 %. Such information is useful
because direct evaluation of observed and predicted values explains the implications
of model performance on the planning and operation of a hydropower system better
than an aggregated variance based statistic. From an operational management point
of view, considerable underestimation of reservoir inflows can have both short- and
long-term effects on the operation of a hydropower system. In the short-term, the com-
pany could be forced to release unvalued water especially when the reservoir water
level is close to its maximum capacity. Hence, the high percentage of underestimations
that occur in the autumn and spring seasons (during calibration and validation) should
not be tolerated because the inflows in the autumn and spring seasons are very im-
portant. On the one hand, substantial overestimation of reservoir inflows can at least
expose any Norwegian hydropower company to undesirable expense due to obliga-
tions to match the power supply it has failed to deliver by dealing with other producers
in the intra-day physical market (Elbas). Although overestimation does not seem to be
a pertinent issue, Fig. 3d unmasks that the inflows are overestimated by a magnitude
> 50 % at least 10 % of the time in all seasons.

3.2.2 Residual analysis

Following the example of Xu (2001), a Kolmogorov—Smirov test is applied to resid-
uals of the conceptual model. The test revealed that the residuals are not normally
distributed. The maximum deviation between the theoretical and the sample lines is
0.130, which is larger than Kolmogorov—Smirov test statistic of 0.008 at significance
level a = 0.05.

Presence of homoscedasticity in the residuals series is diagnosed visually by plotting
the residuals vs. the predicted reservoir inflows (Fig. 4a). With respect to the horizontal
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axis, the scattergram does not remain symmetric for the entire range of predicted in-
flows. The residuals show high variability and possible systematic bias when inflows are
less than 3.5 mm while the opposite is true when the inflows exceed 3.5 mm. Inflows
of magnitudes between 3.5 and 5.5 mm seem to be underestimated while overestima-
tion is visible when the inflow rates are greater than 5.5 mm. However, as can be seen
from Fig. 2, inflows of magnitude up to 3mm represent reservoir inflows during the
rise of the hydrographs including all peak inflows for all hydrologic years but 2005/2006
and 2010/2011. Hence, except for the possible systematic bias during low flows, the
inference from the scatterplot is inconclusive to support or dismiss the issue of predom-
inant underestimation revealed in the model performance evaluation. Moreover, hourly
inflows of magnitudes higher than 3 mm are rare and occurred about 0.1 % of the times
over the calibration and validation period.

Plots of autocorrelation and partial autocorrelation functions of the residual time se-
ries (Fig. 4b and c) indicate a strong time persistence structure in the error series.
Rapid decaying of the partial autocorrelation function confirms the dominance of an
autoregressive process, which the gradually decaying pattern of the autocorrelation
function also suggests. Thus, in order to obtain a Gaussian series it is important to
address issues of heteroscedasticity and serial correlation in the residual series. As
the current study aims at utilising the persistent structure in the residuals for supple-
menting the forecasting system, the corrective action to be taken only aims at removing
the heteroscedasticity. A successful way to do it is through transformation of the flow
data (e.g. Engeland et al., 2005). As outlined in the methodology section, the reservoir
inflows (both observed and predicted) are transformed while estimating parameters of
the error model.

3.3 Structure and performance of the error model

The observed and predicted inflows are transformed using G = 41.4, and 1 =0.9. An
AR model with order p =1 is fitted to the residuals series. In accordance with the
parameter estimation strategy outlined, values of u, = 0.021 and a = 0.97 are obtained.
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Calibration efficiencies calculated for the error model using the RMSE, PBIAS and
NSE metrics are 0.096, —100 % and 0.517, respectively. Corresponding values for the
validation period are computed as 0.095, 20.3 % and 0.630, respectively. NSE values
for the calibration and validation periods imply ability of the error model to capture at
least half of the discrepancies observed between observations and predictions from
the conceptual model. The transformation reduced the maximum deviation between
the theoretical and the sample lines slightly from 0.13 to 0.10, yet the residuals are not
normally distributed (i.e. Kolmogorov—Smirov statistic of 0.008 at significance level of
a = 0.05). As the aim of this study is to utilize the error and complementary models
additively, the extent to which the complementary setup boosted prediction ability in
the forecasting mode is discussed in the next section.

3.4 Forecasting skill of the complementary setup (deterministic assessment)

Imitating operational application of forecasting models in the Norwegian hydropower
system, reservoir inflows for the day-ahead market (Elspot) are estimated using the
presented forecasting system. The system has to run once a day at an hourly time
step, sometime before 12:00 LT after retrieving the latest observations, and the inflow
forecasts are issued for the next 24 hourly time steps beginning from 12:00 LT noon.
Overall performance of the complementary model in forecasting the reservoir inflows
during the calibration and validation periods is first discussed and is followed by evalua-
tion of its forecasting skill with respect to forecast lead-times. Evaluation of the forecast
skill presented in this paper is based on assessment of forecasts made for the period
between 2006/2007 and 2010/2011 as the datasets from 2000/2001 to 2005/2006 are
used for calibrating the system.

3.4.1 Overall performance

Assessment of the overall forecasting skill of the complementary setup shows sig-
nificant improvement in forecast accuracy. The RMSE and NSE statistical criteria
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computed between forecasted and observed inflows are 0.095 and 0.896, respectively.
RMSE values for the autumn, winter, spring and summer forecasts are 0.094, 0.090,
0.132 and 0.044, respectively, and the corresponding NSE values are 0.904, 0.905,
0.859 and 0.873.

Proving capability of the complementary setup to reduce the bias revealed in the
simulation forecasts from the conceptual model, which was pointed out in the previ-
ous section, the 24 h lead-time forecasts exhibited low-level underestimation bias with
PBIAS equal to 3.8 %. Degree of bias in the inflow forecasts differed seasonally. PBIAS
computed for each season in a decreasing order is, summer (-10.2 %), spring (4.6 %),
autumn (2.9 %) and winter (0.7 %). The relatively higher bias in the spring and autumn
forecasts can be related to runoff generation in the Krinsvatn catchment due to snow
melting or occurrence of precipitation in the form of rainfall, which can affect the per-
sistence structure in the residual series obtained from the conceptual model.

Stacked-column plots in Fig. 5 display the occurrence level of each of the six PVE
classes in the residual series between forecasts and observations. Visual comparison
of stacked-column plots of Figs. 5 and 3 shows reduction in PVE count of the high
PVE classes and increase in PVE counts of low PVE classes; e.g. PVE count for the
PVE class > +£50 % decreased by about 15 % while PVE count for the PVE class <
+10 % grew by about 50 %. In order to assess this assertion, a further assessment is
carried out by dividing the six PVE classes into two groups: low PVE (PVE < £10 %)
and high PVE (PVE > £10 %). Ratio between seasonal PVE counts of the low and high
PVE classes is taken and comparison is made on two sets of residual series. These
sets of residuals are, (1) residuals from the simulated forecasts (conceptual model),
and (2) residuals from forecasts of the complementary setup. Results are presented in
Table 3. Apart from confirming the success in reducing PVE counts of high PVE errors,
the results indicate that equal level of success is not achieved in all four seasons. In
relative terms, high PVE errors occur more often in the spring and summer forecasts.
As pointed out earlier, this can be associated to the snowmelt and, to a certain degree,
to rainfall incidents occurring in these seasons.
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3.4.2 Forecast skill with respect to forecast-lead times

Relative reductions in RMSE between forecasts from the complementary setup and
the simulated forecasts from the conceptual model are computed. Detailed results for
each season of the hydrologic years between 2006/2007 and 2010/2011 are presented
in Table 4. The results are also summarized in terms of the minimum, mean and max-
imum relative RMSE reduction as shown in Fig. 6. Excluding forecasts in autumn and
winter seasons of 2006/2007, relative RMSE reductions are observed in forecasts of
short and long lead-times. Of course, in all four seasons, the achieved level of improve-
ment in forecast accuracy is high for short lead-times and diminishes gradually with
increased lead-time. Results show that accuracy of the reservoir inflows in the spring
and summer seasons are improved over the entire range of the forecast lead-time.
Likewise, reduction in RMSE is observed for all autumn and winter inflow forecasts
except for years 2006/2007 and 2007/2008, respectively.

In order to get insight on the improvement level in a unit directly related to hydropower
production, the change in PVE count of each PVE class is calculated. Change in PVE
count of a given absolute PVE classes is the difference between the PVE counts for the
complementary setup and that for the conceptual model. The results are summarized
as shown in Fig. 7. The figure shows that the PVE count of high magnitude absolute
PVE classes are reduced and the opposite is true for that of the smaller absolute PVE
classes. For instance, regardless of the type of discrepancy (under- or over-estimation)
noted, the change in PVE counts of the absolute PVE of the class > 50 % is negative.
The negative sign implies less errors falling in this PVE class in the residual series
from the complementary setup than those from the conceptual model. Similarly, the
changes in PVE counts of the 20-30, 30—40 and 40-50 % absolute PVE classes indi-
cate lowered fraction of occurrence of errors of these orders. In both cases of under-
and over-estimation, absolute PVE of the class < 10 % occurred more frequently; for
example, the fraction of time reservoir inflow forecasts of 1h lead-time deviated from
the observations by a magnitude < 10 % increased by about 52.7 and 27.7 % during
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under- and over-estimations. Overall, the plots show that the magnitude of discrepancy
at each forecasting point is significantly reduced. The improvement level at each fore-
cast lead-time is proportional to the vertical distance from the horizontal axis. It can
be noted that, the vertical distance narrows down with increasing lead-time suggesting
a declining improvement level with increased lead-time.

Calculation of the relative RMSE reduction and the change in PVE counts agree that
the forecast accuracy is improved through the complementary setup. The assessments
further revealed that the degree of improvement weakens with increased forecast lead-
time. However, the relative RMSE reduction computations indicate that in some occa-
sions the simulated inflow forecasts stand out to be better. The relative RMSE reduction
values for lead-times longer than 20 h (Table 4) show that complementing the concep-
tual model with an error model is counterproductive in autumn and winter seasons of
years 2007/2008 and 2006/2007, respectively.

3.5 Reliability of the inflow forecast

Computation of the reliability score for the entire forecast reveals that 96 % of the obser-
vations are inside the 95 % prediction interval. The inflow hydrographs (Fig. 8) confirm
that most of the observed inflows are contained in the specified uncertainty bounds.

The percentage of observation points falling within the 95 % prediction interval varies
from season to season and across hydrologic years (see Fig. 9a). All observed winter
and summer inflows are bracketed in the 95 % uncertainty bound at least 95 % of the
time. In general, the winter season is more of a snow accumulation period and a closer
observation of the hydrographs (see Fig. 8) reveals that the summer hydrographs cover
the recession and base flow portions of the annual hydrographs. Thus, better persis-
tence structure and predictable discrepancies between simulated forecasts from the
conceptual model and the observations. As Goswami et al. (2005) argue, the persis-
tence structure in residual series primarily arises from the dynamic storage effects of
a catchment system.
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The desired percentage of autumn observations is contained in the 95 % prediction
interval in the years 2006/2007, 2008/2009 and 2010/2011. In the years 2007/2008 and
2009/2010, however, only 93 and 94 % of the observed autumn inflows are bracketed
in the estimated 95 % prediction intervals, respectively. Reliability score calculations for
the spring season indicate that percentage of observation points falling in the desired
prediction interval percentage are below 95 % except in the hydrologic years 2007/2008
and 2008/2009. Unlike winter and summer inflows, autumn and spring flows mostly
cover portions of the hydrograph corresponding to the rising limb or high flow regime
(see Fig. 8). While physical factors contributing to the increase in quick flow into the
reservoir are precipitation incidents (in the form of rainfall) and melting of snow in the
headwaters, comprehension of this concept and its encapsulation into the HBV model
leaves control of the catchment response to two threshold values (TX and TS, see Ta-
ble 1 for description). Employing such simple threshold values to govern initiation of the
runoff generation process based on air temperature measurement at a given time-step
obviously involves more sources of uncertainty (i.e. measurement, model structure and
model parameters). For instance, we assume the input air temperature at a given time
step is erroneously recorded to be higher than TX and/or TS due to measurement error.
Subsequently, the model will partition the precipitation as rainfall and initiate melting of
snow, which the observation does not reveal. This kind of misclassification of precipita-
tion and/or misrepresentation of snow accumulation and melting processes can simply
occur due to the error in the input temperature record. Because of this the persistence
in the errors between simulated forecasts from the conceptual model and the observa-
tions can get weaker. According to Goswami et al. (2005), some degree of persistence
in the model input (i.e. rainfall) is another primary source of the persistence character-
istic of observed flow series. Even though the least reliability score calculated for the
autumn and spring seasons are by no means too bad (i.e. 93 and 90 %, respectively),
the requirement for reliability is for the uncertainty bound to contain as much fraction of
observations as desired percentage of prediction interval; hence, the complementary
setup presented seems to have struggled with it.
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The fraction of observed inflows bounded within the estimated prediction interval
decreases with increased lead-time (Fig. 9b). Reliability score for lead-times up to 17 h
fulfil the requirement of containing 95 % of the observations. For lead-times beyond
17 h, the reliability declines and reaches 92 % at forecasts lead-time of 24 h.

Findings from evaluation of the forecast skill of the complementary setup using deter-
ministic and probabilistic metrics support each other. The present procedure is able to
improve accuracy of reservoir inflow forecasts and the level of improvement decreases
as the forecast lead-time increases. Deterministic evaluation of performance of the
forecast system indicates that the concept of complementing the conceptual model
with a simple error is not always effective. As discussed earlier, in some occasions
the present method can get counterproductive in forecasting inflows when the fore-
cast lead-time is beyond 20 h. Similarly, detailed assessment of the reliability (Table 5)
shows that the reliability score of the forecasting system can get below 95 % at forecast
lead-times less than 17 h; e.g. at forecast lead-time of 9 h only 89 % of the observed
spring inflows of year 2006/2007 are bracketed in the 95 % prediction interval.

4 Concluding remarks

In the present study, the forecasting system comprising additively setup conceptual
and simple error model is presented. Parameters of the conceptual model were left
unaltered, as are in most operational setups, and the data-driven model was arranged
to forecast the corrective measures to be made to outputs of the conceptual models
to provide more accurate inflow forecasts into hydropower reservoirs several hours
ahead.

Application to the Krinsvatn catchment revealed that the present procedure could
effectively improve forecast accuracy over a 24 h lead-time. This proves that the effi-
ciency of a flow forecasting system can be enhanced by setting up a data-driven model
to complement a conceptual model operating in the simulation mode. Furthermore, the
current study reveals that analysing characteristics of the residuals from the conceptual
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model is important and heteroscedastic behaviour should be addressed before iden-
tifying and estimating parameters of the error model. Compared to past studies that
applied data-driven and conceptual models in a complementary way, the present pro-
cedure is successful in providing acceptably accurate forecast for extended lead-times.

Results also indicate that probabilistic forecasts can be obtained from deterministic
models by constructing uncertainty of the complementary setup based on predictive
uncertainty of the simple error model. The uncertainty bound seems to satisfy the
reliability requirement when evaluated over the entire forecasting period. Its reliability
with respect to forecast lead-time also appears satisfactory for lead-times up to 17 h.
Nevertheless, the season wise assessment revealed that the degree of reliability of the
forecasts vary from season to season. Given that the error model essentially makes
use of the persistence structure in the residuals from the conceptual model, the present
procedure seems to be unable to capture transitions in the hydrograph errors from over-
to under-estimation (and vice versa). On the one hand, it was unveiled that the degree
of reliability of the forecasts decline with longer lead-times and the deterministic metrics
(RMSE and PVE) confirmed the same.

In order to address these challenges, a future development can be to explore
methodologies for taking care of seasonal variability in the structure of the residual
series. Updating the error models periodically can be one solution but care must be
taken if the selected updating method makes a Gaussian assumption. Another alter-
native would be to explore more complex stochastic models for the residuals, that use
exogenous predictor variables either observed directly (much like the seasonal reser-
voir inflow forecasting models described in Sharma et al., 2000), or using state vari-
ables simulated from the conceptual model (like the Hierarchical Mixtures of Experts
framework in Marshall et al., 2006; Jeremiah et al., 2013). Formulation of these models
will also offer better insight into the deficiencies that exist within the HBV conceptual
model, thereby allowing further improvement to reduce the structural errors present.
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Table 1. Model parameters and corresponding optimized values.

Parameter Description Unit Optimized value
Snow routine

TX Threshold temperature for rain/snow [°C] 2.23
CX Degree-day factor for snow melt (forest free part) [mm(d°C)™"] 9.95
CXF Degree-day factor for snow melt (forested part) [mm (d °C)"1] 5.21
TS Threshold for snow melt/freeze (forest free part) [°C] 0.73
TSF Threshold for snow melt/freeze (forested part) [°C] -1.80
CFR Refreeze coefficient [mm(d °C)'1] 0.04
LW Max relative portion liquid water in snow -] 0.085
Soil and evaporation routine

FC Field capacity [mm] 306.87
FCDEL Minimum soil moisture filling for POE -] 0.31
BETA Non-linearity in soil water retention -] 3.84
INFMAX Infiltration capacity [mm h’1] 30.22
Groundwater and response routine

Kuz2 Outlet coefficient for quickest surface runoff [day'1] 1.65
KUZ1 Outlet coefficient for quick surface runoff [day"1] 0.99
KUz Outlet coefficient for slow surface runoff [day™"] 0.42
KLZ Ouitlet coefficient for groundwater runoff [day"1] 0.09
PERC Constant percolation rate to groundwater storage [mm day'1] 1.60
uz2 Threshold between quickest and quick surface runoff  [mm] 122.34
uzi Threshold between quick and slow surface runoff [mm] 49.97
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Table 2. Summary of overall and seasonal performance of the conceptual model during the

calibration (2001/2002 to 2005/2006) and validation (2006/2007 to 2010/2011) periods.

Seasons Calibration period Validation period

RMSE [mm] PBIAS [%] NSE [-] RMSE [mm] PBIAS [%] NSE [-]
Overall 0.139 1 0.842 0.162 18.8  0.700
Autumn 0.147 1.8 0724 0.147 11.3  0.769
Winter 0.182 -3.7 0.894 0.126 9.7 0.812
Spring 0.131 -2.7 0.709 0.246 24.6  0.509
Summer 0.073 28.2 0.641 0.079 38.2 0.592
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Table 3. Ratio between occurrence frequency of low PVE (< 10%) and high PVE (> 10%)
errors for the hydrologic years 2006/2007—2010/2011.

Data set Overestimation Underestimation
Aut. Win. Spr. Sum. Aut. Win. Spr. Sum.

Simulated forecast (HBV model) 4.4 5.1 7.6 4.5 6.2 52 128 254
Forecast (complementary setup) 1.1 12 15 2.0 09 05 1.1 1.3
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Table 4. Relative RMSE reductions (%) in reservoir inflows forecast as a function of forecast

lead-time (" designates relative RMSE reduction of < 0).

Season/year Lead Time [h]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
06/07 89.3 79.3 70.1 627 567 523 485 45 417 384 35 316 282 256 237 217 191 166 153 143 138 13 115 10.0
g 07/08 916 844 786 735 676 622 580 538 507 480 448 414 388 363 338 307 263 195 109 33 N " N
2 08/09 939 879 817 767 710 659 621 585 541 492 44 39.4 357 323 288 257 232 70 18.4 167 153 141 127 115
2 09710 909 832 769 709 647 591 549 510 472 442 411 381 351 300 295 271 251 233 219 700 700 100 19.1 184
10/11 921 849 787 677 624 57 53.9 512 475 448 424 403 38 358 339 30.0 294 262 231 30.0 172 147 127 109
06/07 942 879 822 756 605 493 428 363 31.3 263 214 175 129 90 67 46 25 13 10 00 ° : " :
g 07/08 91 819 733 662 59.9 541 492 448 40 36.1 333 30.8 281 254 232 90 195 175 156 155 165 175 181 184
£ 0809 917 839 770 740 722 684 622 551 495 444 398 36 289 222 182 156 139 128 119 111 99 86 73 58
2 0910 949 914 873 835 803 788 767 727 659 581 518 469 434 402 377 355 337 322 309 294 278 26 241 222
10/11 939 887 831 759 681 649 614 571 523 47 418 369 322 284 26 242 226 90 194 177 16 146 13 1.1
06/07 942 882 824 77 717 663 611 56.4 523 489 458 431 406 383 36 339 318 30 285 272 262 252 241 232
2 07/08 96.6 933 898 862 826 790 756 728 704 684 666 649 631 613 594 576 558 54 525 511 497 484 471 46.0
S 08/09 95 904 858 816 777 737 706 679 657 635 611 587 563 54 51.7 494 47 447 424 401 377 353 332 316
@ 09/10 939 877 817 760 706 649 593 544 506 474 448 425 404 385 368 352 339 328 300 313 305 297 29.0 283
10/11 946 886 822 757 694 634 577 525 487 468 445 417 390 367 346 327 311 298 287 278 268 258 246 237
. 06/07 948 90 85.7 828 80.1 763 726 697 674 660 651 637 601 582 563 542 516 496 476 449 422 395 368 344
“E’ 07/08 90.7 814 733 66.3 603 556 51.4 480 454 426 399 394 391 371 346 328 31.0 293 284 274 269 262 248 232
£ 08/09 97.2 944 916 89 851 782 69.2 603 529 471 416 367 325 288 254 227 500 186 171 159 146 133 124 119
@ 09/10 924 848 791 762 742 715 684 652 61.0 571 543 519 500 477 451 430 411 393 370 358 350 341 332 300
10/11 942 887 829 764 697 644 593 543 498 458 425 398 372 351 331 315 300 286 275 270 265 259 255 250
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Table 5. Summary of seasonal reliability results (95 % prediction interval) during reservoir inflow

forecasting (2006/2007 to 2010/2011).

Season/year Lead Time [h]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
06/07 99.9 99.9 978 97.8 97.8 97.8 97.8 97.8 97.8 97.8 967 945 945 934 934 934 934 90.1 90.1 912 90.1 90.1 89.0 89.0
g 07/08 99.9 99.9 989 989 978 978 978 978 97.8 978 967 945 912 901 901 89 879 879 86.8 857 857 846 835 835
2 08/09 99.9 99.9 999 99.9 999 989 989 956 956 956 956 956 956 956 956 956 945 934 934 934 923 923 912 90.1
2 09/10 99.9 99.9 989 978 97.8 967 967 956 945 934 934 912 923 923 923 923 934 934 923 923 923 912 90.1 90.1
10/11 999 999 999 989 989 978 989 989 978 967 956 956 956 956 956 956 956 945 934 934 934 923 923 912
06/07 99.9 99.9 99.9 99.9 978 96.7 96.7 956 956 956 956 956 944 944 933 933 922 922 922 922 91.1 911 911 90.0
o] 07/08 99.9 99.9 989 978 97.8 97.8 97.8 97.8 967 967 945 934 934 923 945 945 945 956 96.7 956 956 956 945 945
E 08/09 99.9 99.9 999 999 989 989 989 978 978 978 97.8 97.8 97.8 956 956 956 956 944 944 944 944 944 956 956
B 09/10 99.9 99.9 99.9 99.9 999 999 999 999 999 999 989 989 989 989 989 989 989 989 989 989 978 978 978 97.8
10/11 999 999 999 999 989 967 967 967 96.7 967 967 967 96.7 956 956 96.7 956 956 956 956 944 944 944 944
06/07 99.9 99.9 989 989 978 957 946 935 891 891 891 891 902 880 880 880 880 880 870 859 848 848 848 837
2 07/08 999 999 999 999 999 999 999 989 989 989 989 989 978 97.8 978 96.7 957 946 946 946 946 946 946 94.6
5 08/09 999 99.9 989 989 989 989 97.8 978 97.8 96.7 96.7 96.7 96.7 96.7 96.7 96.7 957 957 957 935 935 935 935 924
@®  09/10 99.9 99.9 989 97.8 97.8 97.8 967 967 946 946 946 935 935 935 91.3 91.3 91.3 91.3 902 902 91.3 89.1 89.1 90.2
10/11 99.9 989 989 967 967 957 946 935 924 924 902 902 891 88 891 87 859 859 848 837 837 837 826 826
N 06/07 99.9 99.9 99.9 99.9 999 999 999 999 999 999 999 999 999 989 989 989 989 989 989 978 978 978 978 97.8
“E’ 07/08 99.9 99.9 999 99.9 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989
€ 08/09 99.9 999 999 999 999 999 999 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989 989
@ 0910 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 999 99.9 999 99.9 999 99.9 999 99.9 999 99.9 99.9 989 989 98.9 989 989
1011 999 999 999 999 989 989 989 989 989 978 967 96.7 96.7 967 96.7 96.7 96.7 96.7 96.7 957 957 957 957 957
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Gauge station

Summary data for the study site

Catchment Krinsvam

Location Nordelva 63.8°W 102°E
Size 207 km*

Alfitnde 87—633ma.sl

Laks 6.7%

Glacier 0

Elevation zones 10

[Source: Adopted from Foald et al., 2002]

Figure 1. Location, characteristics and potential evapotranspiration estimates of the study

catchment.
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Figure 2. Observed and predicted reservoir inflow hydrographs during calibration (left column _
panels) and validation (right column panels) of the conceptual model. 2
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Figure 3. Stacked-column plots of: (1) PVE counts of the six absolute PVE classes (< 10,
10—-20, 20-30, 30-40, 40-50 and > 50 %) during calibration (a) and validation (b); and (2) the
fraction of times under- and over-estimation incidents corresponding to the six PVE classes

occurred during calibration (c) and validation (d).
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Figure 4. Plots of (a) residuals from the conceptual model as a function of predicted inflow
during the calibration period, (b) autocorrelation function of the residuals, and (¢) partial auto-
correlation functions of the residuals.
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Figure 5. Stacked-column plots of: (a) PVE counts of the six absolute PVE classes (< 10, 10—
20, 20-30, 30—40, 40-50 and > 50 %) observed in reservoir inflow forecasts from the comple-
mentary setup; and (b) the corresponding fraction of times under- and over-estimation incidents
corresponding to the six PVE classes occurred. Hydrologic years 2006/2007-2010/2011.
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Figure 6. Summary of relative seasonal RMSE reductions as a function of forecast lead-time
(minimum, mean and maximum values computed from corresponding computations for hydro-

logic years 2006/2007—2010/2011).
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20-30, 3040, 40-50 and > 50 %) as a function of forecast lead-time: (a) overestimation and

(b) underestimation.
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